



# ENGINEERING MANUAL

# Contents

| 1. About us: krafton <sup>*</sup> (formerly Bijl Profielen)                | 4  |
|----------------------------------------------------------------------------|----|
| 2. About the quality of krafton <sup>®</sup> profiles                      | 6  |
| 3. krafton <sup>®</sup> glass fibre-reinforced plastic and the Environment | 8  |
| 4. About composites and the pultrusion process                             | 10 |
| 5. Properties of krafton <sup>®</sup> profiles                             | 12 |
| 6. Properties of krafton <sup>®</sup> bridge decking planks                | 18 |
| 7. Properties of krafton <sup>®</sup> profiles                             | 22 |
| 8. Reference projects and applications                                     | 24 |
|                                                                            |    |
| Appendix 1: profile characteristics                                        | 26 |
| Appendix 2: profile connection methods                                     | 34 |
| Appendix 3: handrail connection methods                                    | 42 |
| Appendix 4: plank dimensions                                               | 46 |



# **About us: krafton®** (formerly Bijl Profielen)

Founded more than 40 years ago as Bijl Profielen, krafton has developed over the years into a well-known and highly respected producer of glass fibre-reinforced polyester profiles and high quality composite structures.

The Netherlands is our home market, however we operate internationally and deliver to customers throughout Europe from our base in Heijningen. Customers who are active in many different branches such as construction, industry, infrastructure, HVAC, offshore, horticulture, energy engineering, sports and leisure. A healthy spread of risk and an extremely stable customer base allow us to achieve autonomous growth year on year.

While we invest constantly in knowledge and technical (production) resources, we also attach great importance to personal contact and knowledge sharing. So we also invest significantly in the relationship with our customers. We enjoy interacting with you as a sparring partner and coming up with alternative, innovative solutions. We cannot afford to sit back complacently, our specialists are always at your disposal for advice and effective action. Realistic, no-nonsense, collaborative and efficient. Speed of response, quality and maximum flexibility for an outstanding price; that is what our clients expect. Value for money that we will always offer with undiminished passion.

We build on the knowledge and experience that we have acquired over many years, because we want to continue to make progress, together with you. Because we are used to going the extra mile at krafton<sup>®</sup> and carrying on when others give up, this engineering manual provides the information you need to apply our profiles.

We warmly invite you to visit us and meet the leading pioneers in the field of pultrusion profiles.



# **About the quality of** krafton<sup>®</sup> profiles

#### **2.1** KRAFTON<sup>®</sup> CERTIFICATES

Quality is one of our main priorities. So we have had our products tested and assessed by various highly respected, national and international institutes. The approvals and certificates that we have obtained for our products are listed below.

Because the company name was recently changed from Bijl Profielen to krafton van BIJL, some of these currently valid certificates are issued to Bijl Profielen.

| Product                                            | Institute                                    | External reference                              | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| krafton <sup>®</sup> bridge<br>decking elements    | Devise Institute<br>Institute<br>Bourdeelunk | Z-10.9-655                                      | All our krafton <sup>®</sup> GRP bridge decking components and fitting methods are DIBt-certified.<br>The Deutsches Institut für Bautechnik (DIBt), the German centre of expertise for building<br>technology, issues general building standards conformity certificates (abZ) for building<br>materials and designs, and also issues European Technical Assessments (ETA) for<br>building materials and construction equipment. |
|                                                    |                                              |                                                 | The general building standards conformity approvals are a reliable indicator of the<br>suitability and applicability of building materials in respect of the structural requirements<br>for buildings and civil engineering structures.                                                                                                                                                                                          |
| Non-slip coating                                   | Genau. Richtig.                              | BBV 1719066-01<br>to 03                         | The non-slip finishes on our bridge decking planks have been assessed based on slip resistance. The tests performed on the non-slip coating determine the class to which it can be assigned.                                                                                                                                                                                                                                     |
|                                                    |                                              |                                                 | The test was performed based on DIN 51130:2014-02, ASR-A 1.5 and reference document GUV-R181 "Fußboden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr".                                                                                                                                                                                                                                                                  |
|                                                    |                                              |                                                 | The three different types are classified based on grain size. The type with the 0.7 mm grain size achieved R12 classification, and the types with 1 - 2 mm and 1 - 3 mm as the grain size achieved R13 classification.                                                                                                                                                                                                           |
| krafton <sup>®</sup><br>GRP profiles               | Deutscher<br>für<br>Boutestnik DIBt          | Z-10.9-803                                      | The Deutsches Institut für Bautechnik (DIBt), the German centre of expertise for building<br>technology, issues general building standards conformity certificates (abZ) for building<br>materials and designs, and also issues European Technical Assessments (ETA) for<br>building materials and construction equipment.                                                                                                       |
|                                                    |                                              |                                                 | The general building standards conformity approvals are a reliable indicator of the<br>suitability and applicability of building materials in respect of the structural requirements<br>for buildings and civil engineering structures.                                                                                                                                                                                          |
| krafton <sup>®</sup><br>GRP profiles<br>and planks | DBS 918010                                   | 21.51-21izbia/<br>030-2101#008-<br>(011/18-ZUL) | Because our GRP profiles can also be used for railway applications and Deutsche Bahn, we also offer the GRP profiles with EBA approval. According to DBS 918 010.                                                                                                                                                                                                                                                                |
| krafton <sup>®</sup><br>GRP profiles<br>and planks | NEN 1370-E22                                 | European<br>Standard<br>EN 13706: 2002          | The European EN 13706 standard - Reinforced plastics composites, specifications for pultruded<br>profiles - covers structures where the load-bearing capacity is an essential criterion and the<br>profiles are used to provide support. The standard specifies the minimum requirements for<br>quality, surface characteristics, tolerances and strength and stiffness values in two classes:                                   |
|                                                    |                                              |                                                 | • E23 - for the most demanding applications<br>• E17 - for less critical applications.                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                              |                                                 | All krafton <sup>®</sup> standard profiles meet or exceed the requirements of E23.                                                                                                                                                                                                                                                                                                                                               |
| krafton*<br>planks                                 | NËN<br>NEN EN 1991-2                         |                                                 | The GRP planks have been assessed against the Buildings Decree (Bouwbesluit) in line with the NEN EN 1991 – 2 and CUR 96 standards. Summaries of these standards are available on our website.                                                                                                                                                                                                                                   |

#### 2.2 KRAFTON® QUALITY CONTROL AND QUALITY SYSTEM

Our long-standing experience in producing glass fibre-reinforced plastic (GRP) profiles guarantees consistently high product quality. However, quality must be checked on a permanent basis. We perform in-house tests using advanced Zwick-Roell material testing systems and other equipment to assess the mechanical performance of our profiles and planks against the specified standards.

We apply a well-designed and proven quality management system to monitor quality throughout the process, from the selection of the raw materials right up to the finished product. Our quality control procedures are designed to assess our GRP products based on the applications.

In addition to our quality checks in the factory, SKZ performs a six-monthly external audit of the production facility and processes. This is an extra guarantee of reliability and quality.



Our quality system and business processes were also audited by Deutsche Bahn in 2019. In its audit report, Deutsche Bahn states that our quality system complies with ISO 9001 and therefore meets the strict requirements imposed by Deutsche Bahn.



# **krafton**<sup>®</sup> glass fibre-reinforced plastic and the Environment

#### 3.1 KRAFTON® GLASS FIBRE-REINFORCED PLASTIC HAS A LOW ENVIRONMENTAL IMPACT

The use of composites in construction has many advantages: they are light, quickly installed, require little maintenance and are very durable. GRP is much more environmentally friendly than people generally realise. In addition, this material is extremely cost-effective. A material's environmental impact relates to the entire value chain: From extracting the raw materials and the strain these activities put on the environment to transport, production, further transport and assembly and erection of the final product.

Glass fibre-reinforced plastic profiles from krafton\* are the solution: the material of the future!

- The energy required to produce GRP is negligible in comparison to steel production (and the same applies to the associated CO<sub>2</sub> emissions). The curing process is exothermic (gives off heat), meaning that the energy consumption per unit produced is extremely low.
- Glass fibre structures are also very much lighter than steel. As a result, up to 50% less energy is required for transport and assembly.
- There is no requirement for further finishing processes that are harmful to the environment, such as hot dip galvanising, painting or conservation, and all these factors make GRP an outstandingly sustainable product.
- GRP's CO<sub>2</sub> equivalent is less than half that of a concrete bridge and approximately a third of the CO2 equivalent for a steel bridge. As a result, GRP's carbon footprint is also very favourable.
- Hardly any harmful by-products are created during production: Pultrusion takes place in a fully closed process that minimises the evaporation of volatile compounds.
- Because many GRP products have a service life of (much) more than 50 years, and even more than 100 years in some cases, replacement (which has a negative impact on the environment) is either not necessary or required less often.
- GRP is 100% recyclable and can be reused in many different applications. (Source: www.compositesuk.co.uk)
   All kinds of GRP products can be professionally recycled to produce high-quality substitute fuels and reclaimed fibres.
- Furthermore, processed GRP waste is a high-grade alternative for the cement industry where it is used both as a fuel and as a mineral raw material.
- Recent advancements also mean that the recycled material can now be added to the process again when producing new materials

New studies that focus on the environmental impact of GRP are published regularly: please refer to our website for the latest updates.

#### **3.2** KRAFTON<sup>®</sup> GUARANTEED RETURN POLICY

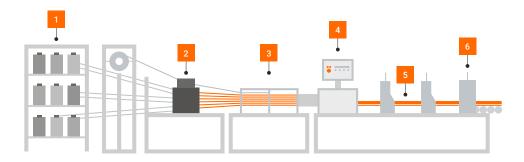
In order to promote the cradle-to-cradle concept, krafton<sup>®</sup> guarantees that it will take back all the GRP profiles it produces. As a result, we can arrange for the profiles to be reused or have them recycled in an environmentally responsible manner.

Glass fibre-reinforced plastic is an extremely sustainable product with an excellent life cycle analysis.



# **About composites** and the pultrusion process

#### **4.1** GENERAL INFORMATION ABOUT COMPOSITES


A composite is produced by combining different engineered materials. The term is often used to refer to fibrereinforced plastics. The fibres transfer the loads, and the matrix (generally plastic) binds the fibres together. These two aspects give the material its high resistance to shear stresses. krafton uses glass fibres in its products.

Composites offer a number of clear advantages, such as:

- Durable and recyclable.
- Practically maintenance-free.
- Resistant to UV and unaffected by fungi and mould.
- Long life expectancy of more than 100 years.
- The profile's properties can be engineered to match the application.
- The material's light weight is beneficial from an occupational health and safety perspective, and reduces costs for transport and lifting equipment.

#### **4.2** THE PULTRUSION PROCESS

We produce the bridge decking planks and structural profiles in our own factory using the pultrusion process. Because pultrusion is an automatic, continuous process, each and every profile meets stringent quality standards.



#### Step 1

The process starts with insertion of the glass fibre reinforcements. Reel winding frames are located at the front of the machine. These frames hold reels of glass fibre thread. Mats and/or fabric often have to be used in addition to the rovings to achieve the desired transverse strength.

#### Step 2

The glass fibre threads, and possibly glass fibre matting, pass through the impregnation bath where they are coated with polyester resin. The liquid polyester resin is mixed with a hardener, colourant, fire retardants and other additives.

#### Step 3

The infeed plates guide the glass fibre threads and mats to the right position in the mould to ensure the correct glass fibre content. The glass fibre threads enhance linear tensile strength and the mats give the material transverse tensile strength. The amount of glass fibre material depends on the profile's design specifications and properties.

#### Step 4

Next, the resin, fibres and mats are pulled through a heated mould. The profile is formed and cured in the hot mould. Halfway through the mould, the material is already starting to harden. Once it leaves the mould, it is fully cured and can be subjected to mechanical load. The profile requires no further processing. The programmable computer controls all machine operations. This is where the throughput speed, cutting length and the different temperature profiles in the mould's heating system are set.

#### Step 5

A dual gripping and pulling system alternately clamps and pulls the profile. The clamps are shaped to exactly match the outside of the profile and are clad with soft plastic to avoid damaging it.

#### Step 6

The cross-cut saw moves at the line speed and cuts the profile to the desired length. Because the saw moves synchronously with the profile, the saw cut is perfectly perpendicular.



# **Properties of** krafton<sup>®</sup> profiles

#### 5.1 COMPARISON BETWEEN THE PROPERTIES OF KRAFTON® AND OTHER MATERIALS

The chart on the next page presents the mechanical properties of each type of material. The important point here is that krafton<sup>®</sup> profiles possess unique properties in comparison to other GRP products. The linear properties of krafton<sup>®</sup> products differ significantly from their properties in the transverse direction.

The properties of krafton<sup>®</sup> profiles lie at the top end of the achievable range for pultrusion profiles. In other words, krafton<sup>®</sup> profiles are a cost-effective choice because less profile is required to create the same structure in comparison to other brands of GRP profile. krafton design approach ensures that the mat separations and overlaps are always located in the right place in the profiles. As a result, the profiles offer a well-balanced mix of properties in multiple directions. This has the following advantages: less material is required for the application, the profiles are easier to join and more resistant to 'misuse' or unforeseen loads.

The values shown for krafton<sup>®</sup> profiles in the chart are indicative. Please refer to the appendix for the exact values per profile: the values differ for each individual product.

| Property                                                          | GRP profiles from krafton*                                                                                                                                                    | Steel S235                                                                             | Alu T6061                                                                                       | Coniferous wood C50<br>NEN-EN 338: 2016                                                                                                 |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Specific weight kg/m <sup>3</sup>                                 | 1,850                                                                                                                                                                         | 7,850                                                                                  | 2,700                                                                                           | 520                                                                                                                                     |
| Tensile strength N/mm <sup>2</sup>                                | Axial (longitudinal): 365<br>Transversal (crosswise):<br>laminate thickness ≤ 6 mm: 105<br>laminate thickness ≥ 7 mm: 48                                                      | 235 yield strength<br>(all directions)                                                 | 276<br>(all directions)                                                                         | 33.5<br>(longitudinal)                                                                                                                  |
| Modulus of elasticity<br>GPa                                      | Axial (longitudinal)<br>laminate thickness 3 and 4 mm: 24.3<br>laminate thickness 5 and 6 mm: 32<br>laminate thickness ≥ 7 mm: 36.5                                           | 210                                                                                    | 69<br>(35 dynamic load/fatigue loading)                                                         | 16                                                                                                                                      |
| Thermal conductivity<br>Iambda value W/m°K                        | Axial (longitudinal) 0.4:<br>Transversal (crosswise) 0.25                                                                                                                     | 50                                                                                     | 237                                                                                             | 0.13                                                                                                                                    |
| Transparency to radio/<br>radar                                   | transparent                                                                                                                                                                   | reflective                                                                             | reflective                                                                                      | Transparent if dry                                                                                                                      |
| Electrical conductivity                                           | insulator                                                                                                                                                                     | conductor                                                                              | Very good conductor                                                                             | non-conductive if dry                                                                                                                   |
| Coefficient of linear<br>expansion<br>mm/m / 100 °C               | Axial: 1.0<br>Transversal: 3.2                                                                                                                                                | 1.2<br>1.2                                                                             | 2.3<br>2.3                                                                                      | Expands in moist conditions                                                                                                             |
| Impact resistance                                                 | Good                                                                                                                                                                          | Very good                                                                              | Average                                                                                         | Poor                                                                                                                                    |
| Resistance to fatigue                                             | Very good                                                                                                                                                                     | Adequate                                                                               | Poor                                                                                            | Poor                                                                                                                                    |
| Resistance to corrosion<br>when exposed to<br>atmospheric effects | No corrosion<br>Paint system only required for<br>cosmetic reasons                                                                                                            | Poor, service life<br>depends on a paint<br>system or galvanising                      | Poor, service life<br>depends on a paint system or<br>anodising,<br>prone to filiform corrosion | Good, but susceptible<br>to rot and mould/fungi,<br>negative impact on the<br>environment due to<br>requirement for regular<br>painting |
| Chemical resistance                                               | Good<br>See comment at the bottom of the<br>chart                                                                                                                             | Poor, service life<br>depends on a paint<br>system or galvanising                      | Poor, service life depends on<br>a paint system or anodising,<br>prone to filiform corrosion    | Poor                                                                                                                                    |
| Resistance to galvanic corrosion                                  | Very good                                                                                                                                                                     | Poor                                                                                   | Poor                                                                                            | Not applicable                                                                                                                          |
| Environment<br>Energy required                                    | Little energy required, raw material<br>for the glass fibre is abundantly<br>available                                                                                        | Polluting production<br>More energy required,<br>so more expensive in<br>the long term | Polluting production<br>Large amounts of energy required,<br>so more expensive in the long term | No energy<br>Absorbs CO <sub>2</sub> during<br>growth                                                                                   |
| Noise transfer                                                    | Sound deadening                                                                                                                                                               | Resonance                                                                              | High, metal content                                                                             | Sound deadening                                                                                                                         |
| Recyclable                                                        | Recyclable in the cement industry,<br>EU-approved, energy stored in the<br>product is used in the cement kiln,<br>glass fibre as an additional ingredi-<br>ent in the process |                                                                                        | Good recyclability,<br>can be produced in<br>a CO <sub>2</sub> neutral process                  |                                                                                                                                         |
| Resistance to alkalis/<br>cement                                  | Yes, however vinylester resins must<br>be used instead of polyester resin for<br>concrete reinforcement                                                                       | Yes                                                                                    | No                                                                                              | Yes                                                                                                                                     |
| Fire resistance                                                   | krafton <sup>®</sup> profiles are rated as class E<br>according to NEN-EN 13501                                                                                               | Incombustible, can be<br>used up to the melting<br>point of 1,400 °C                   | Incombustible, can be used up to the melting point of 666 °C                                    | Combustible                                                                                                                             |

Please contact us for applications involving exposure to chemicals so that we can assess which chemicals are involved. In general, krafton<sup>®</sup> profiles are more resistant to chemicals than most metals, including AISI 316 stainless steel in many cases.



#### 5.2 MECHANICAL PROPERTIES OF KRAFTON® GRP PROFILES

# The strength of structures based on krafton<sup>®</sup> profiles can be calculated, meaning that their behaviour is predictable. The mechanical properties of the material are documented. Please refer to the relevant technical information in appendix 1.

A structure can be completely built using krafton<sup>®</sup> profiles. However, combinations are also possible; e.g. with steel and wood. The make-up of the complete structure remains clear, meaning that it can be disassembled into separate parts. This may be necessary for reuse or recycling at the end of the structure's service life.

The material is resistant to corrosion, practically maintenance-free and light in weight. Due to the light weight, the support structure or foundation is less costly. Furthermore, the structure can be moved using lighter vehicles and cranes.

The profile's mechanical properties are valid within a temperature range from -40 °C to +80 °C. These are characteristic values.

| Property                                                                           | Unit  | Test standard | Characteristic value according to<br>EN 1990 Annex D |
|------------------------------------------------------------------------------------|-------|---------------|------------------------------------------------------|
| Effective bending modulus E <sub>x,eff</sub><br>t = 3 mm and 4 mm                  | N/mm² | EN 13706      | 24,250                                               |
| t = 5 mm and 6 mm<br>t ≥ 7 mm                                                      |       |               | 32,000<br>36,500                                     |
| Axial tensile modulus E <sub>tx</sub>                                              | N/mm² | EN ISO 527-4  |                                                      |
| t = 3 mm and 4 mm<br>t = 5 mm and 6 mm<br>t ≥ 7 mm                                 |       |               | 24,250<br>32,000<br>36,500                           |
| Transversal tensile modulus E <sub>ty</sub>                                        | N/mm² | EN ISO 527-4  |                                                      |
| t ≤ 6 mm<br>t ≥ 7 mm                                                               |       |               | 10,400<br>5,600                                      |
| Axial compressive modulus $E_{cx}$                                                 | N/mm² | EN ISO 14126  |                                                      |
| t = 5 mm and 6 mm<br>t ≥ 7 mm                                                      |       |               | 32,000<br>36,500                                     |
| Transversal compressive modulus E <sub>cy</sub>                                    | N/mm² | EN ISO 14126  | 10,000                                               |
| Shear modulus in the planes $\mathrm{G}_{xy}$ and $\mathrm{G}_{yz}$                | N/mm² | ISO 15310     | 3,000                                                |
| Transversal contraction $v_{yx}$ = 0.23<br>Transversal contraction $v_{xy}$ = 0.07 |       |               |                                                      |

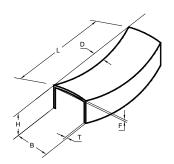
#### **ELASTIC PROPERTIES**

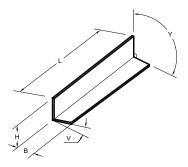
#### YIELD LIMIT AT NORMAL LOADS

| Property                                                          | Yield limit [%] |
|-------------------------------------------------------------------|-----------------|
| Axial tensile force $\boldsymbol{\epsilon}_{tx}$                  | 0.65            |
| Transversal tensile force $\epsilon_{\text{ty}}$                  | 0.15            |
| Axial compressive force $\epsilon_{\rm cx}$                       | 0.50            |
| Transversal compressive force $\boldsymbol{\epsilon}_{\text{cy}}$ | 0.40            |

#### **MECHANICAL PROPERTIES**

| Property                                                                                                                                                                              | Unit  | Test standard | Characteristic value<br>according to EN 1990<br>Annex D |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------------------------------------------------|
| Axial tensile strength $f_{tx}$                                                                                                                                                       | N/mm² | EN ISO 527-4  | 365                                                     |
| Transversal tensile strength f <sub>ty</sub>                                                                                                                                          | N/mm² | EN ISO 527-4  |                                                         |
| t>6 mm                                                                                                                                                                                |       |               | 105<br>48                                               |
| Axial compressive strength $f_{cx}$                                                                                                                                                   | N/mm² | EN ISO 14126  | 300                                                     |
| Transversal compressive strength f <sub>cy</sub>                                                                                                                                      | N/mm² | EN ISO 14126  | 100                                                     |
| Axial pin bearing strength $f_{px}$                                                                                                                                                   | N/mm² | EN 13706-2, E | 150                                                     |
| Transversal pin bearing strength f <sub>py</sub>                                                                                                                                      | N/mm² | EN 13706-2, E | 100                                                     |
| Axial flexural strength f <sub>fx</sub>                                                                                                                                               | N/mm² | EN ISO 14125  | 240                                                     |
| Transversal flexural strength f <sub>fy</sub>                                                                                                                                         | N/mm² | EN ISO 14125  | 60                                                      |
| Interlaminar shear strength $	au_{m}$                                                                                                                                                 | N/mm² | EN ISO 14130  | 33                                                      |
| Shear strength in the plane $f_{xxy}$                                                                                                                                                 | N/mm² | ASTM 7078     | 40                                                      |
| Shear strength perpendicular to the plane $f_{\tau \perp}$ Pull-out strength, tendency of a bolt to pull out of the laminate                                                          | N/mm² | ASTM 7078     | 80                                                      |
| Shear strength for a load applied transversely to the orientation of the fibres, hollow profiles $f_{\ensuremath{\text{trans}}, \ensuremath{\text{trans}}, \ensuremath{\text{trans}}$ | N/mm² | ASTM 7078     | 40                                                      |


#### INFLUENCE OF FACTORS IN RESPECT OF TIME TO TAKE EFFECT


|                        | $A_1^f$ and $A_1^E$ | $A_1^f$ and $A_1^E$ |
|------------------------|---------------------|---------------------|
|                        | ll axial            | ⊥ transversal       |
| Very short             | 1.0                 | 1.0                 |
| Short, up to one week  | 1.15                | 1.30                |
| Medium, up to 3 months | 1.20                | 1.45                |
| Long to very long      | 1.25                | 1.60                |



#### 5.3 STANDARD TOLERANCES FOR KRAFTON® PROFILES

You can expect the following tolerances in relation to the geometry of krafton profiles:





| Wall<br>thickness<br>T | Wall<br>thickness<br>tolerance<br>for open<br>profiles<br>(mm): | Wall<br>thickness<br>tolerance<br>for hollow<br>profiles<br>(mm): | Height<br>H                                                | Width<br>B      | Flatness<br>F | Twist<br>V            | Straightness<br>D        | Perpen-<br>dicularity<br>Y      |           |
|------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-----------------|---------------|-----------------------|--------------------------|---------------------------------|-----------|
| 0                      | ± 0.15                                                          | ± 0.3                                                             | _                                                          |                 |               |                       |                          |                                 |           |
| 1                      | ± 0.15                                                          | ± 0.3                                                             |                                                            |                 |               |                       |                          |                                 |           |
| 2                      | ± 0.15                                                          | ± 0.3                                                             |                                                            |                 |               | < ± 1.5°<br>per metre | D<0.002xL <sup>2</sup>   |                                 |           |
| 3                      | ± 0.2                                                           | ± 0.3                                                             |                                                            |                 |               | permene               | If B or H <50 mm         |                                 |           |
| 4                      | ± 0.2                                                           | ± 0.4                                                             | ± 0.5% x H<br>Minimum<br>± 0.20 mm<br>Maximum<br>± 0.75 mm | Minimum Minimum |               |                       |                          |                                 |           |
| 5                      | ± 0.2                                                           | ± 0.5                                                             |                                                            |                 |               |                       | D<0.001xL <sup>2</sup>   |                                 |           |
| 6                      | ± 0.35                                                          | ± 0.6                                                             |                                                            |                 |               | F= ± 0.008 x B        |                          | lf B or H ≥50 mm<br>and <100 mm | Y= ± 1.5° |
| 7                      | ± 0.35                                                          | ± 0.7                                                             |                                                            |                 |               |                       |                          |                                 |           |
| 8                      | ± 0.35                                                          | ± 0.8                                                             |                                                            | _ 0.00 11111    |               | < ± 1.0°<br>per metre | D<0.0005x L <sup>2</sup> |                                 |           |
| 9                      | ± 0.35                                                          | ± 0.9                                                             |                                                            |                 |               | permene               | lf B or H ≥100 mm        |                                 |           |
| 10                     | ± 0.35                                                          | ±1                                                                | _                                                          |                 |               |                       |                          |                                 |           |
| >10                    | ± 0.45                                                          | ±10%                                                              | _                                                          |                 |               |                       |                          |                                 |           |



6

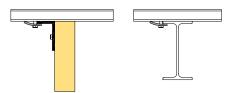
# **Properties of** krafton<sup>®</sup> bridge decking planks

#### **6.1** PROPERTIES – BRIDGE DECKING PLANKS

The chart below presents the characteristic properties of the bridge decking planks.

| Туре                                                                                 | Krafton <sup>®</sup> 500.35                          | Krafton <sup>®</sup> 500.40                                                                                                    | Krafton <sup>®</sup> 500.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Krafton <sup>®</sup> 236.40                          | Krafton <sup>®</sup> 400.85                          | Krafton <sup>®</sup> 256.40                                                                                                    |
|--------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Effective system size:                                                               | 499 mm                                               | 499 mm                                                                                                                         | 499 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 235 mm                                               | 399 mm                                               | 255 mm                                                                                                                         |
| Thickness excluding<br>wear-resistant finish                                         | 35 mm                                                | 40 mm                                                                                                                          | 55 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 mm                                                | 85 mm                                                | 40 mm                                                                                                                          |
| Evenly<br>distributed load                                                           | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> ) | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> )                                                                           | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> ) | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> ) | 5 kN /m <sup>2</sup><br>(500 kg per m <sup>2</sup> )                                                                           |
| Point load Require-<br>ment according to<br>NEN-EN1991-2 NB                          | complies<br>7 kN (700 kg) on<br>100 x 100 mm         | complies<br>7 kN (700 kg) on<br>100 x 100 mm                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | complies<br>7 kN (700 kg) on<br>100 x 100 mm         |                                                                                                                                |
| Point load,<br>maximum                                                               | 7 kN (700 kg) on<br>100 x 100 mm                     | 40 kN (4,000 kg)<br>on 200 x 200 mm                                                                                            | 40 kN (4,000 kg)<br>on 200 x 200 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 kN (4,000 kg)<br>on 200 x 200 mm                  | 40 kN (4,000 kg)<br>on 200 x 200 mm                  | 40 kN (4,000 kg)<br>on 200 x 200 mm                                                                                            |
| Explanatory note<br>in relation to<br>NEN-EN1991-2 NB                                | Not suitable<br>for vehicles                         | Suitable for line<br>service vehicles up<br>to 5 tons<br>(5,000 kg) and<br>incidental vehicles<br>up to 12 tons<br>(12,000 kg) | Suitable for line<br>service vehicles up<br>to 5 tonsSuitable for<br>line service<br>vehicles up<br>to 5 tons(5,000 kg) and<br>up to 12 tons(5,000 kg) and<br>up to 12 tons(5,000 kg) and<br>up to 12 tons5 tons (5,00<br>and incidental vehicles<br>up to 12 tons5 tons (5,00<br>up to 12 tons(12,000 kg)(12,000 kg)(12,000 kg)(12,000 kg)12 tons (12,000<br>with 7 ton ca |                                                      |                                                      | Suitable for line<br>service vehicles up<br>to 5 tons<br>(5,000 kg) and<br>incidental vehicles<br>up to 12 tons<br>(12,000 kg) |
| Maximum span width<br>with only the 50 kN<br>line service vehicle<br>NEN-EN1991-2 NB | n/a                                                  | 700 mm                                                                                                                         | 1020 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700 mm                                               | 1754 mm                                              | 500 mm                                                                                                                         |
| Maximum span width<br>with only the 120 kN<br>incidental vehicle<br>NEN-EN1991-2 NB  | n/a                                                  | 1160 mm                                                                                                                        | 1300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1160 mm                                              | 1300 mm                                              | 650 mm                                                                                                                         |
| Support structure                                                                    |                                                      | Suitable for mo                                                                                                                | ounting to a steel, com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | posite and wooden s                                  | upport structure                                     |                                                                                                                                |
| Fixing methods                                                                       |                                                      | See fixing instructions                                                                                                        | See fixing instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See fixing instructions                              | See fixing instructions                              | See fixing instructions                                                                                                        |
| Anti skid grit surface                                                               |                                                      | TÜV-certified r                                                                                                                | non-slip coating (R12-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13) with grain sizes fro                             | om 0.7 to 3 mm.                                      |                                                                                                                                |
| Elastic modulus                                                                      |                                                      | 33,363 N/mm <sup>2</sup>                                                                                                       | 31,443 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32,704 N/mm <sup>2</sup>                             | 29,550 N/mm <sup>2</sup>                             | 29,402 N/mm <sup>2</sup>                                                                                                       |
| Weight per metre                                                                     |                                                      | 10 kg/m                                                                                                                        | 11.2 kg/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5 kg/m                                             | 16 kg/m                                              | 11 kg/m                                                                                                                        |
| Weight per m²<br>excluding grit surface                                              |                                                      | 20 kg/m <sup>2</sup>                                                                                                           | 22.4 kg/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.5 kg/m <sup>2</sup>                               | 40.0 kg/m <sup>2</sup>                               | 22 kg/m <sup>2</sup>                                                                                                           |
| Linear moment<br>of inertia l <sub>y</sub>                                           |                                                      | 1,238,296 mm <sup>4</sup>                                                                                                      | 2,705,284 mm <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 625,197 mm <sup>4</sup>                              | 10,205,769 mm <sup>4</sup>                           | 716,946 mm <sup>4</sup>                                                                                                        |
| Fire resistance                                                                      |                                                      | Krafton <sup>®</sup> bridge c                                                                                                  | lecking planks are rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed as class E accordin                               | g to NEN-EN 13501                                    |                                                                                                                                |
| Chemical resistance                                                                  | The planks                                           | s are suitable for outdo                                                                                                       | or environments and s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urface exposure to acti                              | ve substances includin                               | g anti-icing chemica                                                                                                           |

Please refer to appendix 4 for drawings of the different planks


#### **6.2** PLANK FITTING METHODS

The many exhaustively tested fitting methods are unique to krafton<sup>®</sup> GRP bridge decking planks. As a result, we can offer a fitting method for all possible support structures. These support structures can be made from steel, wood or GRP. A number of fitting methods depend on the type of plank.

#### Attachment to a GRP angle profile, steel or GRP girder using retaining clamps

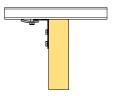


This method is also suitable for a direct clamp joint to a steel or GRP support beam



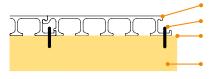
#### Attachment to a wooden girder and GRP angle profile, steel or GRP girder, screwed through the girder




This method is also suitable for direct screw attachment to a steel or GRP support beam



#### Attachment to a wooden girder via a steel angle profile




This method can be applied anywhere under the bridge deck without using an angle profile.

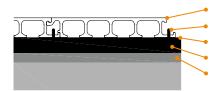




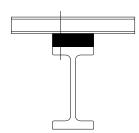
#### Attachment to a wooden beam by a screw inserted from above



Krafton® 236 x 40 mm Wood screw Ø5 x 50 mm EPDM sheet


Wooden support beam




This method can also be combined with a plastic sound-deadening batten on a wood, steel or GRP girder



Krafton<sup>®</sup> 236 x 40 mm Wood screw Ø 5 x 50 mm EPDM sheet PE batten Wooden support beam, or steel or GRP



Krafton<sup>®</sup> 236 x 40 mm Wood screw Ø 5 x 50 mm EPDM sheet PE batten Steel girder or GRP





# **Processing** krafton<sup>®</sup> profiles

#### 7.1 PROCESSING OPERATIONS - GLUEING, PAINTING, MACHINING

#### Glueing

The composite material lends itself well to glueing and painting. Examples of commonly used adhesives: polyurethane single component or 2-component, methacrylate or epoxy adhesive. Other single component adhesives also work well: For example, Sikaflex\* PRO-2-HP or equivalent products from other brands.

Filler mastic for long-term UV-resistant joint sealing such as Sikaflex® 84-UV or equivalent products from other brands. Curing time: longer, several hours up to days

General preparation for glued joints

- 1. degrease and remove any remaining solvent from the profile
- 2. sand the surface
- 3. remove sanding dust
- 4. degrease
- 5. apply adhesive in accordance with the supplier's instructions

#### Painting

Paint systems: depending on the application - alkyd resin-bonded paint, alkyd/polyurethane hybrid, acrylic latex, polyurethane (UV-resistant) or epoxy-based and water-based systems. Ask the paint producer for advice. Surface preparation is similar to that for adhesives.

Adhesives and paints must be applied in dry conditions. Also take the dew point and condensation into account.

#### **Machining operations**

When carrying out machining operations, adequate personal protective equipment must always be used. The following must be worn: eye protection, gloves and a breathing mask with the correct dust filter. Use machines with a working dust extraction attachment.

Apply resin or a suitable coating to seal cut edges and drilled holes. This prevents the ingress of water and chemicals.

| Machining operation | Cutting speed/depth                                                                   | Specifics                                                                      |
|---------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Drilling            | Material thickness less than 12 mm: tungsten carbide 60-80 m/min                      | Use water cooling if necessary to prevent dust                                 |
|                     | Material thickness greater than 12 mm: diamond-tipped 300 - 1,200 m/min               |                                                                                |
| Sawing              | 1,800 - 3,600 m/min                                                                   | Saw blade diameter 200 - 500 mm                                                |
| Milling             | 100 - 400 m/min<br>Maximum depth 0.5 mm per rotation                                  | Tungsten carbide or diamond-tipped with water or air cooling                   |
| Lathe turning       | As brass and aluminium<br>100 - 400 m/min<br>Maximum depth 0.05 - 0.5 mm per rotation | Tungsten carbide or diamond-tipped with water or air cooling                   |
| Punching/shearing   |                                                                                       | Up to 10 mm with tungsten carbide<br>Holes become approximately 0.1 mm smaller |
| Waterjet cutting    |                                                                                       | With or without abrasive<br>Hollow profiles can present problems               |

#### 7.4 PROFILE JOINTS

Appendix 2 details the possibilities for joining profiles. The possibilities for joining handrails can be found in Appendix 3.

Designing an efficient joint is extremely important. Accessory parts can be used if necessary. Hot dip galvanised steel or stainless steel can be used as an alternative for composite.

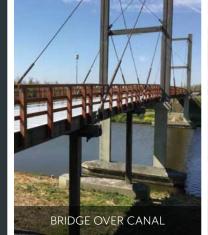
NB: use nuts with bolts threaded along their entire length according to DIN-931/933 for the joints. Use large flat washers according to DIN-ISO 7093 to spread the loads. The washers spread the imposed load evenly over the surface. Tighten the bolts to the torque values in the chart.

The hole centre-to-centre and edge-to-hole distances shown in the information in the appendices must be observed.










GRP

PROFILES



GRP BRIDGE DECKING PLANKS





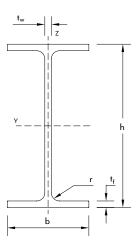






## **CUSTOM** GRP PROFILE





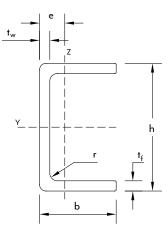





### I profile, profile characteristics

Geometry and cross-sectional dimensions

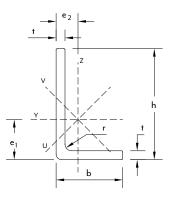



| hxbxt          | h   | b   | t <sub>f</sub> | t <sub>w</sub> | r   | A                               | A <sub>s,z</sub>                | A <sub>s,y</sub>                | g     | l <sub>yy</sub>                 | I <sub>zz</sub>                 |
|----------------|-----|-----|----------------|----------------|-----|---------------------------------|---------------------------------|---------------------------------|-------|---------------------------------|---------------------------------|
|                | mm  | mm  | mm             | mm             | mm  | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m  | 10 <sup>6</sup> mm <sup>4</sup> | 10 <sup>6</sup> mm <sup>4</sup> |
| 120 x 60 x 6   | 120 | 60  | 6              | 6              | 7.5 | 1.42                            | 0.65                            | 0.65                            | 2.77  | 3.10                            | 0.22                            |
| 150 x 75 x 6   | 150 | 75  | 6              | 6              | 8   | 1.78                            | 0.83                            | 0.72                            | 3.47  | 6.20                            | 0.42                            |
| 160 x 80 x 8   | 160 | 80  | 8              | 8              | 8   | 2.49                            | 1.22                            | 1.02                            | 4.86  | 9.66                            | 0.69                            |
| 200 x 100 x 10 | 200 | 100 | 10             | 10             | 11  | 3.88                            | 1.90                            | 1.60                            | 7.57  | 23.66                           | 1.67                            |
| 240 x 120 x 12 | 240 | 120 | 12             | 12             | 12  | 5.60                            | 2.74                            | 2.30                            | 10.92 | 48.90                           | 3.50                            |
| 240 x 150 x 20 | 240 | 150 | 20             | 10             | 16  | 8.21                            | 2.22                            | 4.80                            | 15.19 | 81.43                           | 11.25                           |
| 300 x 150 x 15 | 300 | 150 | 15             | 15             | 15  | 8.74                            | 4.28                            | 3.60                            | 16.17 | 119.00                          | 8.54                            |
| 360 x 180 x 18 | 360 | 180 | 18             | 18             | 18  | 12.60                           | 6.16                            | 5.18                            | 23.31 | 248.00                          | 17.70                           |

#### Abbreviations:

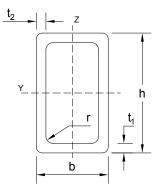
A: cross-sectional surface area As: shear area

- g: weight per linear meter
- I: linear moment of inertia
- e: maximum fibre distance


### U profile, profile characteristics



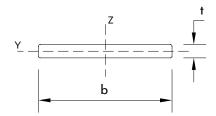
| h   | b                                                                                                   | t <sub>f</sub>                                                                                                                                                                                                                                                                                                                                    | t <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A <sub>s,z</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sub>s,y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I <sub>yy</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>zz</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm  | mm                                                                                                  | mm                                                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>3</sup> mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>3</sup> mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>3</sup> mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>6</sup> mm⁴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>6</sup> mm <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 70  | 30                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 30                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 40                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100 | 50                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 120 | 50                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 140 | 40                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 140 | 60                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 150 | 40                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 160 | 48                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 | 60                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 | 80                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 240 | 72                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 240 | 72                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 300 | 90                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 360 | 108                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | mm<br>70<br>100<br>100<br>120<br>140<br>140<br>150<br>160<br>200<br>200<br>240<br>240<br>240<br>300 | mm         mm           70         30           100         30           100         40           100         50           120         50           140         40           140         60           150         40           160         48           200         60           240         72           240         72           300         90 | mm         mm           70         30         5           100         30         6           100         40         5           100         50         6           120         50         6           140         40         5           150         40         6           160         48         8           200         60         10           200         80         8           240         72         8           240         72         12           300         90         15 | mm         mm         mm         mm           70         30         5         5           100         30         6         6           100         40         5         5           100         50         6         6           120         50         6         6           140         40         5         5           150         40         6         6           160         48         8         8           200         60         10         10           200         80         8         8           240         72         8         8           240         72         12         12           300         90         15         15 | mm         mm         mm         mm         mm           70         30         5         5         2           100         30         6         6         4           100         40         5         5         3           100         50         6         6         5           120         50         6         6         5           140         40         5         5         2           150         40         6         6         8           160         48         8         8         8           200         60         10         10         11           200         80         8         8         8           240         72         8         8         16           240         72         12         12         12           300         90         15         15         16 | mm         mm         mm         mm         mm         10 <sup>3</sup> mm <sup>2</sup> 70         30         5         5         2         0.60           100         30         6         6         4         0.89           100         40         5         5         3         0.85           100         50         6         6         5         1.14           120         50         6         6         5         1.25           140         40         5         5         2         1.30           150         40         6         6         8         1.33           160         48         8         8         1.95           200         60         10         10         11         3.03           200         80         8         8         2.76           240         72         8         8         16         2.93           240         72         12         12         4.38           300         90         15         15         16         6.84 | mm         mm         mm         mm         lo3         lo3         lo3         mm2         lo3         mm2         lo3         mm2         lo3         mm2         lo3         mm2         lo3         mm2         lo3         mm3         mm3         mm3         lo3         lo3 <thlo3< th=""> <thlo3< th=""> <thlo3< th=""></thlo3<></thlo3<></thlo3<> | mm         mm         mm         mm         mm         lo <sup>3</sup> mm <sup>2</sup> lo <sup>3</sup> mm <sup>3</sup> lo <sup>3</sup> mm <sup>3</sup> 70         30         5         5         2         0.60         0.32         0.27           100         30         6         6         4         0.89         0.54         0.32           100         40         5         5         3         0.85         0.45         0.36           100         40         5         5         3         0.85         0.45         0.54           100         50         6         6         5         1.14         0.54         0.54           120         50         6         6         5         1.25         0.63         0.54           140         40         5         5         5         1.06         0.63         0.63           140         60         5         5         2         1.30         0.63         0.63           150         40         6         6         8         1.33         0.81         0.43           160         48         8         8         1.95         1.15         0.69           200 <td>mm         mm         mm         mm         lo<sup>5</sup> mm<sup>2</sup>         lo<sup>5</sup> mm<sup>2</sup>         lo<sup>5</sup> mm<sup>2</sup>         lo<sup>5</sup> mm<sup>2</sup>         kg/m           70         30         5         5         2         0.60         0.32         0.27         1.17           100         30         6         6         4         0.89         0.54         0.32         1.74           100         40         5         5         3         0.85         0.45         0.36         1.66           100         40         5         5         3         0.85         0.45         0.36         1.66           100         50         6         6         5         1.14         0.54         0.54         2.22           120         50         6         6         5         1.25         0.63         0.36         2.07           140         40         5         5         2         1.30         0.63         0.63         2.54           150         40         6         6         8         1.33         0.81         0.43         2.59           160         48         8         8         1.95         1.15         0.69         3.</td> <td>mm         mm         mm         mm         log mm²         log mm²         log mm²         log mm²         kg/m         log mm⁴           70         30         5         5         2         0.60         0.32         0.27         1.17         0.40           100         30         6         6         4         0.89         0.54         0.32         1.74         1.14           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20           100         50         6         6         5         1.14         0.54         0.54         2.22         1.67           120         50         6         6         5         1.25         0.63         0.54         2.44         2.58           140         40         5         5         1.06         0.63         0.63         2.54         3.78           150         40         6         6         8         1.33         0.81         0.43         2.59         3.80</td> <td>mm         mm         mm         mm         lo3 mm         lo3 mm         lo3 mm         kg/m         lo6 mm         lo6 mm           70         30         5         5         2         0.60         0.32         0.27         1.17         0.40         0.04           100         30         6         6         4         0.89         0.54         0.32         1.74         1.14         0.06           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20         0.12           100         50         6         6         5         1.14         0.54         0.54         2.22         1.67         0.26           120         50         6         6         5         1.25         0.63         0.54         2.44         2.58         0.28           140         40         5         5         5         1.06         0.63         0.63         2.07         2.78         0.13           140         60         5         5         2         1.30         0.63         0.63         2.54         3.78         0.43           150         40         <td< td=""></td<></td> | mm         mm         mm         mm         lo <sup>5</sup> mm <sup>2</sup> lo <sup>5</sup> mm <sup>2</sup> lo <sup>5</sup> mm <sup>2</sup> lo <sup>5</sup> mm <sup>2</sup> kg/m           70         30         5         5         2         0.60         0.32         0.27         1.17           100         30         6         6         4         0.89         0.54         0.32         1.74           100         40         5         5         3         0.85         0.45         0.36         1.66           100         40         5         5         3         0.85         0.45         0.36         1.66           100         50         6         6         5         1.14         0.54         0.54         2.22           120         50         6         6         5         1.25         0.63         0.36         2.07           140         40         5         5         2         1.30         0.63         0.63         2.54           150         40         6         6         8         1.33         0.81         0.43         2.59           160         48         8         8         1.95         1.15         0.69         3. | mm         mm         mm         mm         log mm²         log mm²         log mm²         log mm²         kg/m         log mm⁴           70         30         5         5         2         0.60         0.32         0.27         1.17         0.40           100         30         6         6         4         0.89         0.54         0.32         1.74         1.14           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20           100         50         6         6         5         1.14         0.54         0.54         2.22         1.67           120         50         6         6         5         1.25         0.63         0.54         2.44         2.58           140         40         5         5         1.06         0.63         0.63         2.54         3.78           150         40         6         6         8         1.33         0.81         0.43         2.59         3.80 | mm         mm         mm         mm         lo3 mm         lo3 mm         lo3 mm         kg/m         lo6 mm         lo6 mm           70         30         5         5         2         0.60         0.32         0.27         1.17         0.40         0.04           100         30         6         6         4         0.89         0.54         0.32         1.74         1.14         0.06           100         40         5         5         3         0.85         0.45         0.36         1.66         1.20         0.12           100         50         6         6         5         1.14         0.54         0.54         2.22         1.67         0.26           120         50         6         6         5         1.25         0.63         0.54         2.44         2.58         0.28           140         40         5         5         5         1.06         0.63         0.63         2.07         2.78         0.13           140         60         5         5         2         1.30         0.63         0.63         2.54         3.78         0.43           150         40 <td< td=""></td<> |




### L profile, profile characteristics

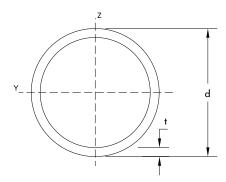


| hxbxt          | h   | b   | t  | r  | Α                               | A <sub>s,z</sub>                | A <sub>s,y</sub>                | g    | I <sub>yy</sub>                 | l <sub>zz</sub>                 | I <sub>uu</sub>                 | l <sub>vv</sub>                 | e <sub>1</sub> | e <sub>2</sub> |
|----------------|-----|-----|----|----|---------------------------------|---------------------------------|---------------------------------|------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------|----------------|
|                | mm  | mm  | mm | mm | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m | 10 <sup>6</sup> mm <sup>4</sup> | mm             | mm             |
| 50 x 50 x 5    | 50  | 50  | 5  | 1  | 0.47                            | 0.23                            | 0.23                            | 0.92 | 0.11                            | 0.11                            | 0.18                            | 0.043                           | 14.50          | 14.50          |
| 50 x 50 x 6    | 50  | 50  | 6  | 4  | 0.56                            | 0.27                            | 0.27                            | 1.09 | 0.13                            | 0.13                            | 0.21                            | 0.052                           | 14.80          | 14.80          |
| 50 x 50 x 8    | 50  | 50  | 8  | 4  | 0.73                            | 0.36                            | 0.36                            | 1.42 | 0.17                            | 0.17                            | 0.26                            | 0.068                           | 15.50          | 15.50          |
| 60 x 40 x 5    | 60  | 40  | 5  | 2  | 0.47                            | 0.27                            | 0.18                            | 0.92 | 0.17                            | 0.06                            | 0.18                            | 0.057                           | 19.90          | 9.90           |
| 75 x 75 x 6    | 75  | 75  | 6  | 7  | 0.87                            | 0.41                            | 0.41                            | 1.70 | 0.47                            | 0.47                            | 0.74                            | 0.200                           | 20.80          | 20.80          |
| 75 x 75 x 8    | 75  | 75  | 8  | 4  | 1.13                            | 0.54                            | 0.54                            | 2.20 | 0.60                            | 0.60                            | 0.96                            | 0.242                           | 21.70          | 21.70          |
| 80 x 80 x 8    | 80  | 80  | 8  | 7  | 1.23                            | 0.58                            | 0.58                            | 2.40 | 0.74                            | 0.74                            | 1.16                            | 0.313                           | 22.80          | 22.80          |
| 100 x 60 x 8   | 100 | 60  | 8  | 6  | 1.22                            | 0.72                            | 0.43                            | 2.38 | 1.25                            | 0.34                            | 1.17                            | 0.416                           | 34.20          | 14.30          |
| 100 x 100 x 8  | 100 | 100 | 8  | 7  | 1.55                            | 0.72                            | 0.72                            | 3.02 | 1.49                            | 1.49                            | 2.34                            | 0.626                           | 27.80          | 27.80          |
| 100 x 100 x 10 | 100 | 100 | 10 | 5  | 1.90                            | 0.90                            | 0.90                            | 3.71 | 1.80                            | 1.80                            | 2.85                            | 0.704                           | 29.90          | 29.90          |
| 100 x 100 x 12 | 100 | 100 | 12 | 7  | 2.27                            | 1.08                            | 1.08                            | 4.43 | 2.10                            | 2.10                            | 3.32                            | 0.883                           | 29.30          | 29.30          |
| 150 x 100 x 8  | 150 | 100 | 8  | 7  | 1.95                            | 1.08                            | 0.72                            | 3.80 | 4.57                            | 1.67                            | 5.27                            | 0.971                           | 47.80          | 22.90          |
| 150 x 100 x 10 | 150 | 100 | 10 | 7  | 2.41                            | 1.35                            | 0.90                            | 4.70 | 5.59                            | 2.03                            | 6.44                            | 1.180                           | 48.60          | 23.70          |
| 150 x 100 x 12 | 150 | 100 | 12 | 7  | 2.87                            | 1.62                            | 1.08                            | 5.60 | 6.57                            | 2.37                            | 7.56                            | 1.380                           | 49.40          | 24.50          |
| 150 x 150 x 8  | 150 | 150 | 8  | 7  | 2.35                            | 1.08                            | 1.08                            | 4.58 | 5.21                            | 5.21                            | 8.24                            | 2.170                           | 40.30          | 40.30          |
| 150 x 150 x 10 | 150 | 150 | 10 | 7  | 2.91                            | 1.35                            | 1.35                            | 5.67 | 6.38                            | 6.38                            | 10.10                           | 2.650                           | 41.10          | 41.10          |
| 150 x 150 x 12 | 150 | 150 | 12 | 7  | 3.47                            | 1.62                            | 1.62                            | 6.77 | 7.51                            | 7.51                            | 11.90                           | 3.110                           | 41.90          | 41.90          |


### Box section profile, profile characteristics



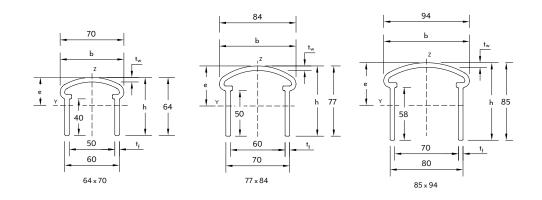
| hxbxt          | h   | b   | t <sub>1</sub> | t <sub>2</sub> | r  | A                               | A <sub>s,z</sub>                | A <sub>s,y</sub>                | g     | I <sub>yy</sub>                 | I <sub>zz</sub>                 |
|----------------|-----|-----|----------------|----------------|----|---------------------------------|---------------------------------|---------------------------------|-------|---------------------------------|---------------------------------|
|                | mm  | mm  | mm             | mm             | mm | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m  | 10 <sup>6</sup> mm <sup>4</sup> | 10 <sup>6</sup> mm <sup>4</sup> |
| 40 x 40 x 5    | 40  | 40  | 5              | 5              | 1  | 0.70                            | 0.36                            | 0.36                            | 1.37  | 0.15                            | 0.15                            |
| 50 x 50 x 5    | 50  | 50  | 5              | 5              | 2  | 0.90                            | 0.45                            | 0.45                            | 1.76  | 0.31                            | 0.31                            |
| 60 x 40 x 5    | 60  | 40  | 5              | 5              | 2  | 0.89                            | 0.54                            | 0.36                            | 1.74  | 0.41                            | 0.21                            |
| 60 x 60 x 5    | 60  | 60  | 5              | 5              | 4  | 1.08                            | 0.54                            | 0.54                            | 2.11  | 0.56                            | 0.56                            |
| 70 x 70 x 5    | 70  | 70  | 5              | 5              | 2  | 1.29                            | 0.63                            | 0.63                            | 2.52  | 0.92                            | 0.92                            |
| 80 x 60 x 5    | 80  | 60  | 5              | 5              | 4  | 1.31                            | 0.72                            | 0.54                            | 2.55  | 1.15                            | 0.72                            |
| 70 x 70 x 7    | 70  | 70  | 7              | 7              | 2  | 1.75                            | 0.88                            | 0.88                            | 3.41  | 1.18                            | 1.18                            |
| 75 x 75 x 6    | 75  | 75  | 6              | 6              | 4  | 1.66                            | 0.81                            | 0.81                            | 3.24  | 1.32                            | 1.32                            |
| 75 x 75 x 8    | 75  | 75  | 8              | 8              | 4  | 2.14                            | 1.08                            | 1.08                            | 4.17  | 1.63                            | 1.63                            |
| 80 x 40 x 5    | 80  | 40  | 5              | 5              | 4  | 1.10                            | 0.72                            | 0.36                            | 2.15  | 0.85                            | 0.27                            |
| 100 x 60 x 8   | 100 | 60  | 8              | 8              | 4  | 2.31                            | 1.44                            | 0.86                            | 4.50  | 2.84                            | 1.20                            |
| 100 x 100 x 6  | 100 | 100 | 6              | 6              | 1  | 2.27                            | 1.08                            | 1.08                            | 4.43  | 3.36                            | 3.36                            |
| 100 x 100 x 8  | 100 | 100 | 8              | 8              | 4  | 2.96                            | 1.44                            | 1.44                            | 5.77  | 4.21                            | 4.21                            |
| 100 x 100 x 10 | 100 | 100 | 10             | 10             | 4  | 3.60                            | 1.80                            | 1.80                            | 7.02  | 4.92                            | 4.92                            |
| 120 x 60 x 5   | 120 | 60  | 5              | 5              | 4  | 1.70                            | 1.10                            | 0.54                            | 3.32  | 3.09                            | 1.01                            |
| 120 x 120 x 6  | 120 | 120 | 6              | 6              | 4  | 2.75                            | 1.30                            | 1.30                            | 5.36  | 5.98                            | 5.98                            |
| 120 x 120 x 8  | 120 | 120 | 8              | 8              | 8  | 3.60                            | 1.73                            | 1.73                            | 7.02  | 7.57                            | 7.57                            |
| 160 x 160 x 8  | 160 | 160 | 8              | 8              | 8  | 4.92                            | 2.30                            | 2.30                            | 9.59  | 19.10                           | 19.10                           |
| 200 x 200 x 10 | 200 | 200 | 10             | 10             | 10 | 7.69                            | 3.60                            | 3.60                            | 15.00 | 46.50                           | 46.50                           |
| 240 x 240 x 12 | 240 | 240 | 12             | 12             | 12 | 11.00                           | 5.18                            | 5.18                            | 21.45 | 96.40                           | 96.40                           |

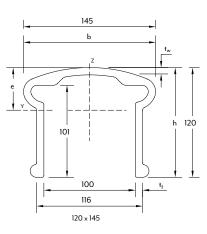



### Flat profile, profile characteristics



| hxb      | b   | t  | Α                               | A <sub>s,z</sub>                | A <sub>s.y</sub>                | g     | l <sub>yy</sub>     | l <sub>zz</sub>                 |
|----------|-----|----|---------------------------------|---------------------------------|---------------------------------|-------|---------------------|---------------------------------|
|          | mm  | mm | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m  | 10 <sup>6</sup> mm⁴ | 10 <sup>6</sup> mm <sup>4</sup> |
| 50 x 6   | 50  | 6  | 0.30                            | 0.198                           | 0.198                           | 0.59  | 0.001               | 0.063                           |
| 150 x 7  | 150 | 7  | 1.05                            | 0.700                           | 0.700                           | 2.05  | 0.004               | 1.969                           |
| 200 x 11 | 200 | 11 | 2.20                            | 1.456                           | 1.456                           | 4.29  | 0.022               | 7.333                           |
| 250 x 11 | 250 | 11 | 2.75                            | 1.832                           | 1.832                           | 5.36  | 0.028               | 14.323                          |
| 750 x 6  | 750 | 6  | 4.50                            | 2.997                           | 2.997                           | 8.78  | 0.014               | 210.930                         |
| 750 x 9  | 750 | 9  | 6.75                            | 4.496                           | 4.496                           | 13.16 | 0.410               | 455.630                         |
| 750 x 10 | 750 | 10 | 7.50                            | 5.000                           | 5.000                           | 14.63 | 0.211               | 351.563                         |
| 100 x 15 | 100 | 15 | 1.5                             | 1.000                           | 1.000                           | 2.78  | 0.028               | 1.25                            |
| 750 x 15 | 750 | 15 | 11.25                           | 16.875                          | 16.875                          | 20.81 | 0.623               | 527.344                         |


### Round tube profile, profile characteristics



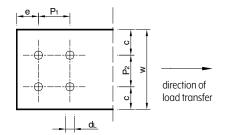

| dxt    | d  | t  | Α                               | A <sub>s,z</sub>                | A <sub>s.y</sub>                | g    | I <sub>yy</sub> = I <sub>zz</sub> |
|--------|----|----|---------------------------------|---------------------------------|---------------------------------|------|-----------------------------------|
|        | mm | mm | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m | 10 <sup>6</sup> mm <sup>4</sup>   |
| 40 x 5 | 40 | 5  | 0.55                            | 0.28                            | 0.28                            | 1.07 | 0.086                             |
| 48 x 5 | 48 | 5  | 0.68                            | 0.34                            | 0.34                            | 1.33 | 0.158                             |



### Handrail profile, profile characteristics






| hxb       | h   | b   | t <sub>f</sub> | t <sub>w</sub> | A                               | A <sub>s,z</sub>                | A <sub>s,y</sub>                | g    | I <sub>yy</sub>                 | I <sub>zz</sub>                 | е     |
|-----------|-----|-----|----------------|----------------|---------------------------------|---------------------------------|---------------------------------|------|---------------------------------|---------------------------------|-------|
| · · · · · | mm  | mm  | mm             | mm             | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | 10 <sup>3</sup> mm <sup>2</sup> | kg/m | 10 <sup>6</sup> mm <sup>4</sup> | 10 <sup>6</sup> mm <sup>4</sup> | mm    |
| 64 x 70   | 64  | 70  | 5              | 5              | 0.90                            | 0.40                            | 0.64                            | 1.76 | 0.327                           | 0.571                           | 24.79 |
| 77 x 84   | 77  | 84  | 5              | 5              | 1.10                            | 0.49                            | 0.77                            | 2.15 | 0.585                           | 0.992                           | 29.93 |
| 85 x 94   | 85  | 94  | 5              | 5              | 1.24                            | 0.54                            | 0.85                            | 2.42 | 0.814                           | 1.443                           | 32.31 |
| 120 x 145 | 120 | 145 | 8              | 8              | 3.20                            | 1.92                            | 1.16                            | 6.24 | 4.710                           | 8.270                           | 45.95 |



### **Profile connection methods**

Minimum spacing, end and edge distances

| Minimum distance                             | е                  | с                  | Pl     | P2              |
|----------------------------------------------|--------------------|--------------------|--------|-----------------|
| Load in the profile's longitudinal direction | 2.5 d <sub>s</sub> | $2d_s$             | $4d_s$ | $4  d_s$        |
| Load perpendicular to the profile            | 2.5 d <sub>s</sub> | 2.5 d <sub>s</sub> | $4d_s$ | $4\mathrm{d_s}$ |

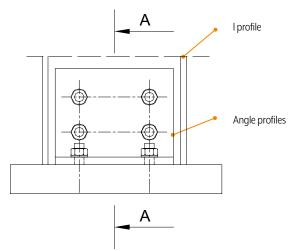


d<sub>s</sub> = bolt diameter

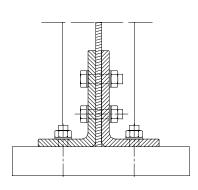
d<sub>L</sub> = hole diameter

### Maximum torque values $M_A$ and preload forces $F_y$

| Washer/bolt                     | M8                                    | M10                                                                                                                                     | M12   | M16   | M20   |  |  |  |  |
|---------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--|--|--|--|
| d <sub>s</sub> (mm)             | 8                                     | 10                                                                                                                                      | 12    | 16    | 20    |  |  |  |  |
| Outer diameter of the washer    | · · · · · · · · · · · · · · · · · · · |                                                                                                                                         |       |       |       |  |  |  |  |
| M <sub>A</sub> (Nm)             | 16.8                                  | 33.2                                                                                                                                    | 59.0  | 141.2 | 275.3 |  |  |  |  |
| F <sub>V</sub> (kN)             | 11.1                                  | 17.48                                                                                                                                   | 26.24 | 47.07 | 73.42 |  |  |  |  |
| Outer diameter<br>of the washer | fund                                  | In the case of bolted joints that have no other function than positioning, washers with a diameter of at least 3.0 x $d_c$ are required |       |       |       |  |  |  |  |
| M <sub>A</sub> (Nm)             | 5.73                                  | 11.6                                                                                                                                    | 20.9  | 50.7  | 98.6  |  |  |  |  |
| F <sub>v</sub> (kN)             | 3.78                                  | 6.09                                                                                                                                    | 9.28  | 16.91 | 26.30 |  |  |  |  |

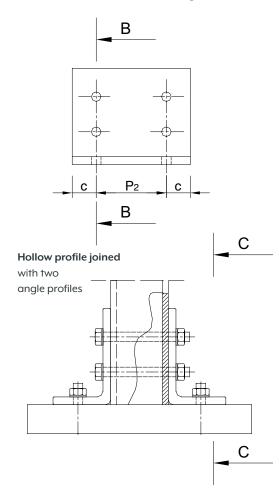

The following clearance must be observed between the bolt diameter and the hole diameter:

Bolts in the range M8 to M16:dLM20 bolts:dL

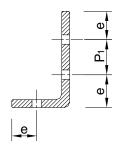

d<sub>L</sub> - d<sub>s</sub> ≤ 1.0 mm d<sub>L</sub> - d<sub>s</sub> ≤ 2.0 mm

### Example of column-to-foundation joints

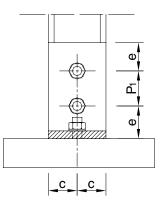
#### I profile joined with two angle profiles






#### Angle profile

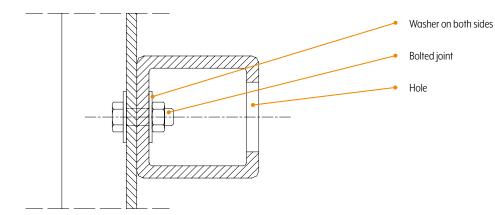

with the recommended hole and edge distances

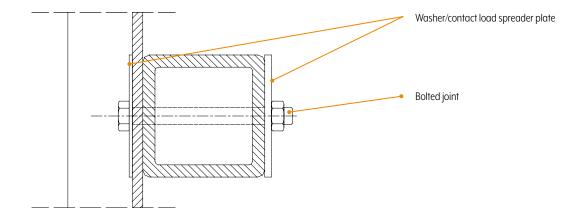


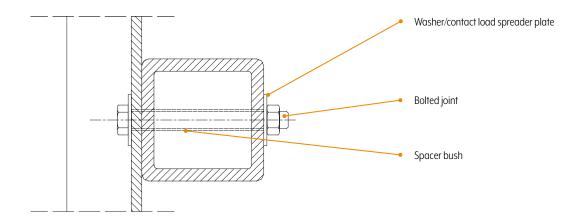
Cross section B - B



Cross section C - C

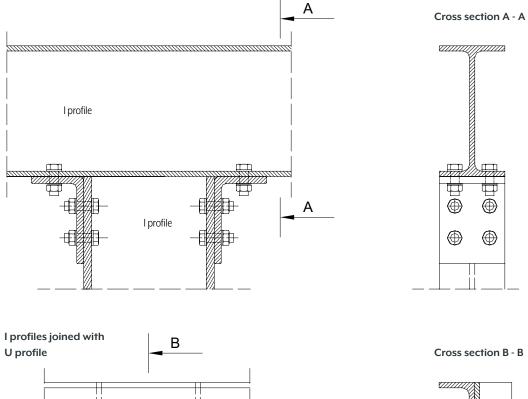


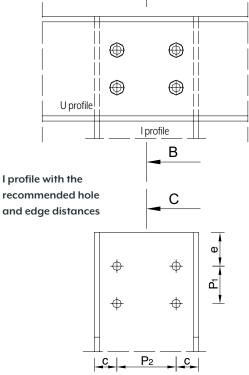





# Example of joints between box section profiles subjected to shear stress

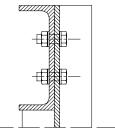
Contact load spreader plates Square b x b or h x h of the box section profile Steel plate:  $t \ge 0.12 x b$  or h GRP plate:  $t \ge 0.2 x b$  or h

The following applies in the case of bolted joints that have no other function than positioning and are not subjected to load:

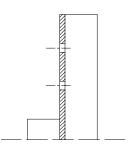






## Example of joints subjected to shear stress

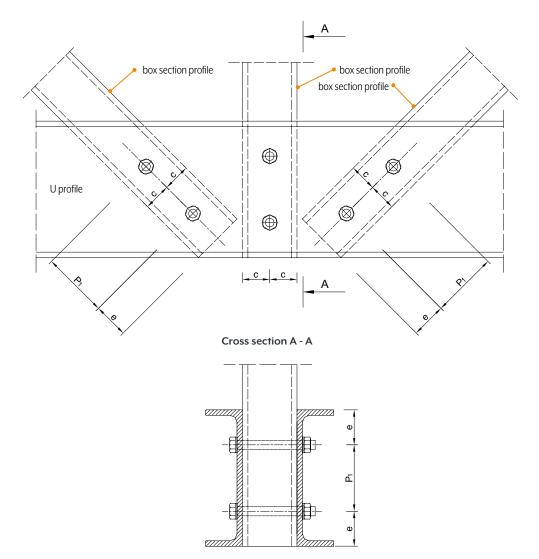
### Two I profiles joined with angle profiles





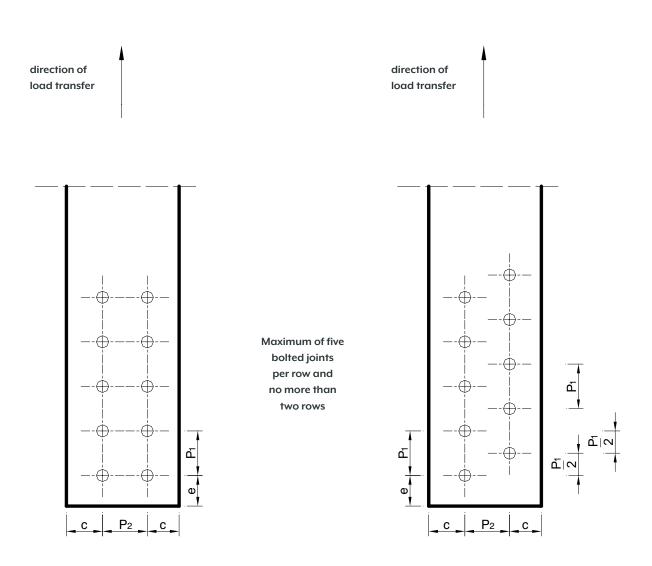

С




Cross section C - C



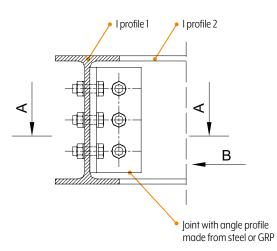



# Example of a diagonal joint

#### Box section profiles joined with U profiles

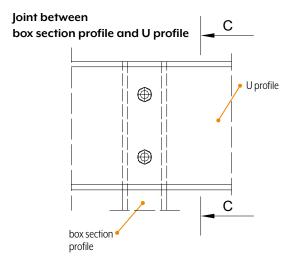


## Example of a hole pattern for transferring major loads

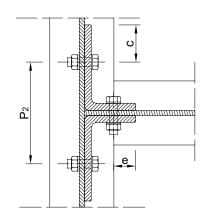

#### Hole pattern

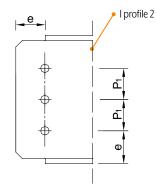




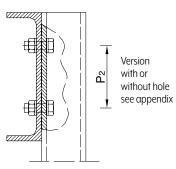

## Example of joints at an angle of 90 degrees

#### I profiles joined with angle profiles





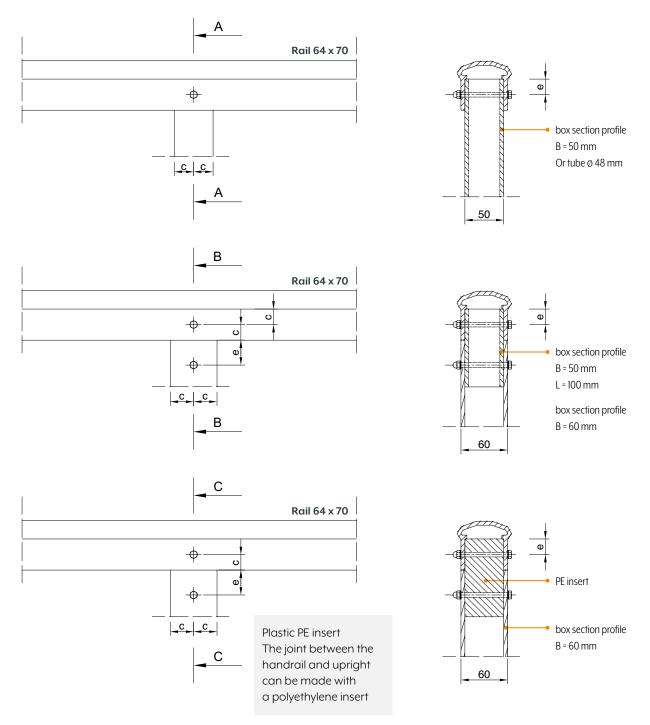



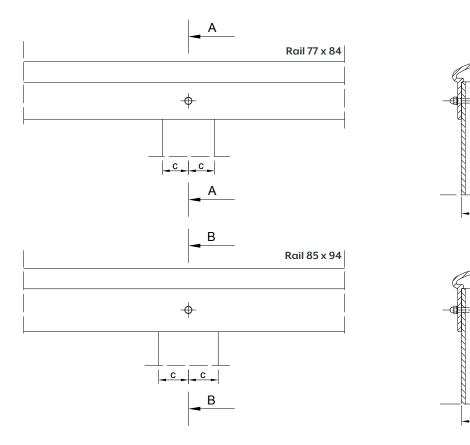

Cross section A - A





Cross section C - C






# Connection methods for handrails

#### 50 mm handrail joints





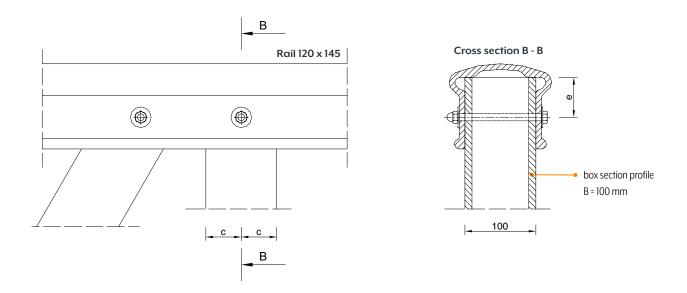
### 60 mm and 70 mm handrail joints



Φ

Φ

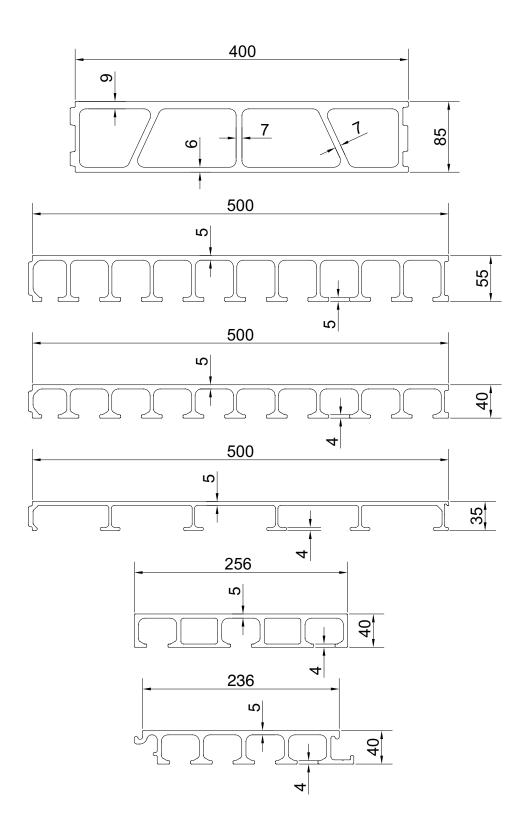
box section profile B = 60 mm


box section profile B = 70 mm

Ľ1

60

70


### 100 mm handrail joints







# Plank dimensions







## **ABOUT US**

krafton<sup>®</sup> (Dintelmond, incorporated in 1978) is the leading producer of glass fibre-reinforced polyester profiles and bridge decking planks. Each year, we supply significant quantities of standard profiles, custom profiles and bridge decking planks. Our products are used by customers throughout Europe for projects in the construction, railway infrastructure, logistics, offshore, horticulture and sports & leisure sectors. The excellent and consistent quality of krafton<sup>®</sup> products is demonstrated by the company's many quality labels and certificates, such as EBA, DIBt and TÜV.



**krafton\*** Markweg Zuid 34, NL-4794 SN Heijningen, Netherlands T +31 (0) 168 227 510 info@krafton.uk, www.krafton.uk